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ABSTRACT

//Titterington { B.2"-roposed recursive methods for dealing with

incomplete data. The present paper concentrates on versions of these for

multiparameter problems involving missing data. Theorems are outlined from

which asymptotic properties of the recursive procedures can be established and

versions of the recursions are written down for problems in which the missing

data are missing at random. After illustration with exponential family

models, the case of multivariate Normal data is considered in detail.

Numerical comparisons of the various methods are obtained using bivariate

Normal data.
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SIGNIFICANCE AND EXPLANATION

This paper is a development of a previous report (2376) by the first

author. The introductory comments to that paper are highly relevant here.

)Whereas the previous paper discussed incomplete data in general, the present

one restricts attention to the problem of missing values. Typically, each

experimental unit should have records of the values of several characteristics

associated with it. Statistical analysis is made difficult if one or more of

those values are missing on some units.

To combat the heavy analysis required for a Oproper* analysis of the

data, comparatively simple recursive procedures are outlined in which the data

are incorporated sequentially into the estimation scheme. Some comments are

made about theoretical properties and special emphasis is laid on the case of

data from multivariate Normal distributions.

A 'CSc-, For

JusfictI .___

Ii._75 s yi) ,.' I j/

.!"

The responsibility for the wording and views expressed in this descriptive
summary lies with MRC, and not with the authors of this report.

-____________- - --- -- - ---. . . --.--" -" -.----. --- -- --.--- .---- _-_- -. ., ii, _,~,,z= .,, .



RECURSIVE ESTIMATION PROCEDURES FOR MISSING-DATA PROBLLEMS

D. M. Titterington* and J-N. Jiang**

1 INTRODUCTION

Suppose yIY 2,... form a sequence of independent observations from a population with

parametric probability density function g(yJ2), where 9 is a vector of a

parameters. Let S(y,e), the vector of scores corresponding to a single observation, be

defined by

s (Ye) -alog g(ylg), j - 1...,
j 30 j

and let 1(0) be the Fisher information matrix corresponding to one observation. It is

assumed that all these quantities exist and that the "usual" regularity conditions hold in

order that differentiation with respect to 0 and integration over y may be

interchanged. Consider the recursion

!k+, - 0k + (k + 1) ViCk) S~y 1 .8 )' k - 0,1,.... (1)

Under certain extra mild conditions referred to in Titterington (1982), as k *

-1
Y' (0e - 0 T N(0,1(0

-}k -? -

in distribution, where 
6
T is the true value of 0.

If we are dealing with incomplete data, however, the asymptotically efficient

stochastic approximation (1) may not be easy to apply, mainly because I(S) can be

difficult to evaluate and, if necessary, invert. The former problem arises even with

simple, one-parameter models, such as the estimation of the mixing weight in a mixture of

two known densities, and both problems appear in, for instance, parameter estimation for a

mixture of two univariate Normal densities. These illustrations appear in Titterinqton

(1982) where recursions alternative to (1) are also suggested. One natural proposal is to
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replace (k + I)I(k) by the total sample information up to this point. This might still

require awkward matrix inversion. Another suggestion is to use, instead, the recursion

a8+ - 08 + (k + 1) 1 (8 e) S(y k+1 .)e k - 0,1,.... (2)

where I c(6) is the Fisher Information matrix corresponding to a comlete observation.

Ic(0) is usually easy to evaluate and in many applications, is easy to invert. Again an

asymptotic result can be drawn upon and the recursion has strong associations with the 3M

algorithm (Dempster, Laird and Rubin, 1977) for maximum likelihood estimation see

Titterington (1982).

The objective of this paper is to develop these recursions for missing-data problems,

with emphasis on multivariate Normal data, and to assess their performance on moderately

large data-sets. One aspect of importance is the dependence of the results on the order in

which the data are incorporated. Given a set of n data points it is intended that 0n

as given by (1) or Wn, from (2), be used as the parameter estimate, one pass having been

made through the data. It is hoped that such a procedure gives estimators which perform

well and yet is inexpensive in computer time in comparison with the iterative numerical

procedures, such as the 3M algorithm itself, traditionally used with incomplete data.

These methods should prove to be very useful with large incomplete data-sets, such as

sample surveys with nonresponse.

-2-
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2. TIRORNTIOCL ASPBCTS

The important theoretical questions concern the aeymptotic properties of the sequence

of estimators generated by the stochastic approximations (1) and (2). We extract the

following theorem from the work of alk (1977), giving the essential features of the result

but not detailing all the many regularity conditions.

Theorem 1. Consider the recursion

.*k,1 - _Ok - (k+ 1)'1 (f(.) + !k+ , )

where W O, almost surely, and, for each k, (V ) ( *, where the
Yk -1 -k -k-k

expected value is based on the true distribution. Suppose

f ) f + AO ) (_ - 0 ) + o10 - 6 1
T -h- -T - -2

and that the eigenvalues of A AO() re all greater than I. Then, given certain

other regularity conditions, as k + -,

S(6 k - 0 -T M(oIS) ,

in distribution, where iB is the unique solution of

(AT-i 11 )B~ + T ( 1  X)- (3)

Zn this equation, 1. donotes the a x a identity matrix and 14T " lim cov(V k).
k+0

in our applications, for f% ) + Vk+ 1 we have

-1;
where G(0) - '1 (0) in (1) and G(O) - I() in (2).

NoW
V(yo k ) - a !(Y,_ k ) + S(Y,.0 k ) a - 3(Y,.O))

and

Lk -T-~ -(T)( -e IT - (!T)- -
6

in the theorem, therefore, we have

A(S - G0)1(0)

and

2 - GC!()Z(. 2 )G(j 2 )

-3-



For recursion (1). with G(81 - I(e) 
1 , 

A(M) - I (so that the eigenvalue condition

is certainly satisfied), MT - I(QT)' and therefore BT - 1(8)-, giving the result

stated in Section 1.

When AT  is symetric, equation (3) can be solved explicitly in terms of the

sigenvalues and eigenvectors of AT, giving the solution obtained by Sacks (1958, p. 399)

and Fabian (1968). In (2), however, with

A(M) - Ic ()

symetry of A(M) is not guaranteed unless Ic(0) and 1(.) are both diagonal. Equation

(3) does, however, give a linear equation from which ST may be determined, in principle.

With recursion (2) the eigenvalue condition may come into play. if X) is the

minimum eigenvalue of AT, we require X* > +. Otherwise &-consistency does not follow

for (.!k). Provided, however, A* - 0 > 0, is symetric and there is sufficient

regularity,

k%/2R - 6, N(0,9(0,0)) , (5)
-k -T - -T

in distribution as k * *, where B8 - S(0,.e) satisfies
B -T

(A-101)8 +a(A T -- 01 N)

This result comes from Fabian (1968). Although the following result has not been

tracked down it is reasonable to suppose that, if T is nonsymetric, (5) holds with B

satisfying

(A 1)B + B (A T~ 0)-

T2 sO0 AT 2IB - T

From (4) we may interpret the eigenvalues of A(e) as giving the amount of

information about the parameters available in an incomplete observation relative to a

complete one. Were A* - 0 it would mean that not all the parameters are identifiable

from the incomplete data and neither (1) nor (2) would be usable. Otherwise the simple

recursion (2) does give consistent estimates, if not asymptotically efficient ones.

One-parameter problems were discussed in Titterington (1982) and the multiparameter

theorem above could be applied to the Normal mixture problem described in that paper. Here

we concentrate on multivariate data with missing values.

-4-



3. APPLICATION TO MISSING-DATA PROBLZMS

The problem will be formulated, as in Rubin (1976) and Little (1978), with the help of

missing-value indicators. Suppose each observation is r-dimensional and that d iis an

i-indicator vector for observation ± such that d1 has r-components, zeros to denote

missing values and ones elsewhere. Let zi denote the set of observed values, where the

symbol 'v' is inserted for a component which is missing. Then the overall observed

quantity for observation i is

Xi " (zi°

A typical complete observation would be

in which I is a vector of ones and x, has no *v
=
.

Introduce the density functions g(xdIS) and f(x,14I) and make the following

assumptions.

(i) gCz,dl!] - g I(z161)g 2C(dIS 2)

Cii) f(C,1!) - f (_l%)g2Q0,).

(i1) 8 - (01,02) where 1 and 82 are distinct sets of parameters.

If z is now interpreted as representing just the non-missing components, it in also

assumed that

91(21!l
)  f f ICI )dX ,

X(z)

where X(z) is the set of x which can be regarded as completions of z.

Under these assumptions we may ignore the missing-data process when making inferences

about 01 see Rubin (1976). As a result of (i) we may write the score vector and

information matrix as

and

-5-.



(0e -

- 0  122)

so that

This separation means that, in the recursions, 2 and 22 can be updated more or

less separately and indeed updating 62 reduces simply to the estimation of multinomial

parameters using relative frequencies. The separation is not quite complete because

I (eI) - g2( ld 2)II(8111)

where II( I 11) denotes the information matrix obtained from missing-data pattern d.

Typically 11(11) will be calculable, as it is associated with a complete-data problem,

of lower dimension than r. Thus, in this class of problems it is often possible to

calculate I(eI) explicitly, although it does depend on -2" In this respect recursion

(1) should be more feasible here than it is for mixture problems, say.

It is clear, from Section 2, that I (6 ) has to be positive definite.

Example. Exponential family models.

Suppose

log f(X~I) - const + t(xlTl - a(C

and define W 3(tx)181 ). Given complete data x1 ,...,x, yielding l, ....,n, the

maximum likelihood estimator for # is In - n-  ti which can be calculated
i-I

recursively from

+ (k + 1) t -(6)

k - 0,1,...,n - 1, with = 0.

Suppose t (d) denotes the components of t observed when the missing-data pattern in

z is d. Then, as was shown in Titterington (1982), where the relationship with a

-6-



recursive version of the !I algorithm was pointed out, recursion (2) can be written
- 1()- - (7)

*31+1 '0 i + k+1 + if1 (3I 'iO

For special exponential family problems this recursion takes another interesting
(4)T -IT

form. Suppose we writeJ - (t ),t ) and suppose that td is cuti see Barndorff-t-4

Nielsen (1976, p. 50). Then t (a) has linear regression on t (d) (Barnorff-Nielsen,

1978, p. 197), so that, for some matrix H(Q),

3(t(d) It(d), d) ( d) (d )  (8)

Thus, partitioning (7), we have

-Cd) -dk +1

+ (k + -1). H l d) )

This pattern will be apparent in the multivariate Normal exampleO considered later.

A formula for H(t) can be obtained in terms of the complete-data information matrix

for 1, C(I).

since t(d )  is a cut, it follows, as in Sarndorff-Nilaen (1978, p. 128), that t(d)

itself has an exponential family distribution. Given the above partitioning, the

appropriate score vector for use in (1) or (2) is, therefore,

c (~d) )(t(d) ( jd))

where t(d) . 5lt 1( 1)  and Ic(j (d)3I is the leading square submatrix of CI()

Suppose that f(d) is q-diaensional and that the first q columns of Ic(t) 1 are given

by

Then because of the form of recursion (2), the mattix H(t) in (8) is given by

z(,d) c(d)- I'

This can be written as

-7-



-c (d,d) I c(d,d)

where these two matrices come from an appropriate partitioning of I c(), see, for

instance Barndorff-Nielsen (1978, p.3).

To investigate possible consistency of recursions (1) and (2), nonsingularity of the

incomplete-data information matrix for 1, I(j), must be sought. It is convenient to use

the notation of Hartley and Hocking (1971). Suppose t and I are s-dimensional and that

(
d) is q-dimensional, with q < a. Then, for a certain q x a matrix, Dd' of zeros

and ones,
adoet(d) . Dg f(d) _C I( d) )-1- 1 -I DT

t- = DJi 1c~ DdIc± Dd

Also, DdDd - Iq, the q x q identity matrix. In the special partitioning of t

considered earlier, the first q columns of Dd make up I q. For brevity, let

v(d) - g2CdI 12) ,

the probability of obtaining incompleteness pattern d.

Then if, whatever d is, the corresponding t(d) is a cut,

1()-I .(d ) T I (d) )0D
d

Suppose, for j - 1,...,s, denotes the sum of T(d) over all d from which the

jth component of t can be calculated. Then, for nonsingularity of 1(t), we require

V i > 0, for all J.

Whether or not (7) leads to /k-consistent estimators depends on the eigenvalues of

I c ()'I(T). In the very simple case of the s-dimensional multivariate exponential

distribution with independent components, we require that the probability of observation of

each component be at least 1/.

The rest of the paper will be devoted to the multivariate Normal distribution. Since

this belongs to the exponential family we already have some insight into this case. For

instance, consistency at even the weakest rate is possible only if there is positive

probability of observing each element in the appropriate sufficient statistic t(x). For

the multivariate Normal case there must be positive probability of observing each pair of

components of x.



4. MXULTIVARIATU NORMAL DATA

In spite of the aforementioned relationship with the exponential family, it is helpful

to look at recursions for the morp familar parameters, to be denoted by (.,E). Given

complete observations x1 ,...,,, which are independent and identically distributed

N(P,Z), the maximum likelihood estimators of (.z,E) can be generated recursively by

-1 1 - (xk~ -_(a-k-1 " -k 
+  

(k + 1 -k)S

+ Ck+ W k" ' I k )., I .)(k+1 l,)
T  

r.,(9)
k+1 =k +(k 1'{ -1j X1+ I - 4)-k1- -k~) - EZ}

starting from is 0, 0 . 0. These recursions can be obtained from the complete-data

version of (1) for the appropriate parameters in the exponential family representation,

that is, recursion (6), and subsequent re-expression in terms of (u,E). The direct

version of (1) in terms of (C,E) gives (8) along with

which is an apparently very minor variant of (9).

Further recourse to the notation of Hartley and Hocking (1971) will help the

consideration of the incomplete-data problem.

Suppose d represents a particular missing-data pattern with q(Cs) observed

components in x. Suppose -2d (q x 1) and Ed(q x q) are the corresponding mean vector

and covariance matrix and let Dd be as in Section 3. Then
T

Ed d d

Let . be the vector, of length 1/2 a(s + 1), of the elements of E written as a

vector. Let 2d be the vector, of length i/2 q(q + i), containing the elements of Ed

and let Cd be a matrix of zeros and ones such that

2d -Cd2 •
CdCT will be the identity matrix of order 1/2 q(q + 1).

The complete-data information matrix, per observation, is

-9-



I-

rI(c,,Y) 0
C0 

YOl)

where I () -E and I (a) - U - ,  
where U is a symmetric matrix of orderc- C-

1/2e($+ 1). The element in row (i,J) and column (u,v) of U is

Lu ajv + iv ju
,  i 4 J, u 4 v

The incomplete-data information matrix is also block-diagonal.

I (u,v) -l
1) 0 1(0)

in which

X(P) ~d)DT E-1DEcu) - X ,1d)0D 1oD

d - d d d

I .(wd)D T(CE D)A (1
dd -"l °ldE d )d d1,

and

1(0) w.. T Cd UCT 
)  

Cd  (112)

d - d d *(2

The explicit forms for (11) and (12) allow recursion (1) to be considered without the

need for numerical integration. A recursion using sample information could also be

considered but it will be more complicated since the block-diagonal form noted above will

not obtain. This is why this method is not included in the simulation study in Section S.

Calculation of the score vector associated with a single observation also follows

Hartley and Hocking (1971). Suppose g (x d ) denotes the p.d.f. for an observed value

corresponding to missing-data pattern d. Then

a- l o g1g _ - s a y_(X ) ,
log glXd) -dd - d yd

( x CT(CdUCdl( - 0)-S Cx), say.

aalog gi -d Cd d d -d - --d

In the second equation, ad -Cd, where a is the suitably-ordered vector version

of C - -

-10-



For recursion (2) we must premultiply this score vector by Ic(,O)-1. In the case of

a complete observation, for which Cd is the identity matrix of order 1
/29(s + 1), we

obtain the recursions (8) and (10). aven for an incomplete observation we obtain an

appealing result. Partition the score vector, as above, as

s5(x )
S(Xd,_i,-1  i -S;(d)

Then

-1 / 1 ixd)

Icl(,o) l I S(xl dduj)

Suppose, without loss of generality, the first q components of x are observed and are

denoted by ! ,. Write 
T  

T ) and partition i and Z correspondingly. Then

I - 1 0 (13) 1 I

It is more helpful to express the vector USQ(xd) as a k x k symmetric matrix at

this point. If S11 denotes the matrix (x1 - 2 1  - 1
) T  

then we obtain

811 -ll11 -1 11E11

(14)
ET E-1 T 1-1 I I)1-11

12 11 11 - ) 12 1111 - 11 12

Zxpressions (13) and (14) can now be used in the second term on the right hand side of

recursion (2).

One disadvantage of recursion (2) is that a different form of (13) and (14) is

required for each pattern, d, of missing values. Expression (13), however, can be

written as

-11-

___ __ i



., (15)

where x2 -2 + E 12 11(1 ( IM the regression function for 6 2  given X1"

If, at stage k + 1, we can observe x (k + 1) and have obtained, currently,

and TkI then, with these quantities substituted in the right hand side of (151, we

obtain a regression imputation x2 (k + 1) for the missing values x (k + 1). The use of

(13) in recursion (2) in then equivalent to (a) using the imputed x2 (k + 1). The use of

(15) removes the need for separate versions of recursion (2) for P. Hope that the

completed x+ can be used in (10) instead of (14) are ill-founded. if x from (15) is

used in this way then, instead of (14), we obtain a matrix which differs in the bottom

right hand block. This block is

-1 -1 T -112 11 11)E 11 12 12 11 12

?-1

since 2 - z I12 is nonnegative definite, this block is "smaller than it should
22 12Z11 1

b" and the resulting recursion would lead to "negative bias" in the estimator of E22.

This is because the imputed x2 is a conditional expected value and the residual variance

is ignored; see also Beals and Little (1975). Perhaps a more satisfactory approach based

on recursive imputation and use of (8) and (10) is to use, not (15), but a pseudo-random

imputation

T -1
" 2 122 * L12 ZI(LI - 1!1 12 (16)

where

E T' E2 - 1 El!2 N(, 22 U 121112
)

Such imputation and updating does not correspond exactly to (13) and (14) but,

conditionally on x1 as w e as z 12 and E22' the updating terms do, on average,

give (13) and (14).

We now illustrate these approaches for the case of bivariate data.

-12-
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5. ILLUBTRATION FOR BIVARIATE NORMAL DATA

we consider the special case of bivariate Normal data in which the first component of

any observation is always available but the second component may be missing, with

probability ( - 1). This is special in that explicit solutions are available for the

maximum likelihood estimates of the parameters, because of the *nested' missing-data

structures see Morrison (1971), Rubin (1974) and Mocking end Marx (1979). it will be

possible, therefore, to compare our recursive methods easily with non-recursive maximum

likelihood.

Recursion (2) takes the following form. At stage (k + 1), if _k+ 1 is complete

then (8) and (10) are used to update. If only the first component x (k + 1) is given,

then (8) is used to update B, using the regression imputation x2 (k + 1) for

x2 (k + 1). where

x2 (k + 1) - V2 (k) + k6k+1 (17)

in which 
8
k -)1 ) and

Ik+1  x I(k + 1) - az(k)

E k is updated according to

S11(k + 1) E 1 1(k) +(k + 1)Ak+1

1 2 (k + 12 W k + 1)kak+

E 22 (k + 1)- E22 (k) + (k + 1)

where A -(x (k + 1) - (k).
2 

-
k+1 I I)

In order to illustrate the resulting bias in estimating E22, a regression-imputation

recursion was tried, using (8) and (10) along with the imputation formula (17). Also, a

regression-imputation with residual was studied, in which a pseudo-random C 1 was added

on to (17) before it was plugged into (8) and (10).

Ck+1 - (0, z22 (k) - E12 (k)
2
/E 11 (k))

Another characteristic of this example is that recursion (1) will be easy to apply

because of the explicit invertability of the incomplete-data information matrix, I(jao).

-13-
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From Section 4 it is clear that the two blocks, (i) and I(0), in the block diagonal

form of I10,C) may be considered separately. For this example

X(u) - IE-
1 + 01 - W)vvT

where 
T  

C- 1/2,0), so that

" -11, 1 SO th0

=i)
"  w1lE[ - w'111 - lls)vv E: - E + w 11 , 22 -sl ~ 1  . (181

. 0 122 " 12 /Zll

Similarly, if a I - E12'E 22

I(C) I " + (1 -i)w ,

where U is as described in Section 4 and v / (/,'2 E1 1 10,0). Thus

(. )"  1 - WU - (I - -)UwT, (19)

which can be rearranged to some extent for easiest progreimng.

Expressions (18) and (19) combine with the score vectors to give very simple versions

of recursion (1).

For this example, checking of the eigenvalue condition for the optimal convergence

rate of recursion (1) is quite easy.

A(uA)- () - ) -10,U
E-( 1 0)

where B E -12 /E 11 Alto,

-1 0 0

I(M)l1 1(0) W :13 + ( - w wT "- ) W 0

e2(1 - 1W) 0 .

Thus, the distinct eigenvalues of ,dpo) are 1 and w, so that &-consistency

obtains if w ) 1/2 . Note that, unless 0 - 0, A is not symmetric. If 6 - 0, the

asymptotic covariance matrix, 8, for irk !Ok is

-14-



diag{1ye,2,y,2y)

where y - w(2v - 1)
1
. F or 8 0, the linear equations (3) must be solved for B.

It should be stressed that we are unusually lucky in this example to be able to use

recursion (1) and the proper maximu likelihood procedure so easily. in many examples the

versions of recursion (2) should dominate as far as computation time is concerned. Apart

from this consideration, however, the following comparisons should give a guide to relative

effectiveness of the different methods.

In the simulations, bivariate Normal distributions with zero means and unit component

variances are used. Two values of the correlation coefficient, p - 0 and 0 - 0.6 are

considered. In each simulation the first 10 observations were complete. Thereafter, the

second component of each observation wms treated as missing with probability I - I - 3/4,

independently for each observation. Since v < 1/2 this means that we cannot expect the

optimal rate of consistency for recursion (2). Extensive results sre given in an

unpublished M.Sc report at the State University of New York at Albany by J-H. Jiang, but

the results reported here were obtained on a VAX/780 computer at the University of

Wisconsin in madison. The estimation procedures are denoted as follows.

1. Standard recursion (2).

I. Recursive procedure using (8) and (10) with regression imputation (17).

111. As 11 but incorporating pseudo-random residuals into the imputation.

IV. Standard recursion (1).

V. True maximum likelihood from the available data.

VI. Recursive treatment of the complete data.

Table I gives root mean-squared errors (34ta's) for the five parameters from batches

of 100 simulations, each with total sample size 100.

The results in Section (a) of the table correspond to the use of recursions like (10)

for E, those in Section (b) to (9). Thus, VI in Section (b) corresponds to maximum

likelihood estimation on the complete data. The natural superiority of VI(b) is clear from

the results. Other major features of the table are as follows.

-1S-
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i) Qualitatively, the picture is the sme for o - 0.0 and p - 0.6.

(ii) Apart from estimation of Z22 by method 11 (regression imputation) the results

in (b) are better than those in (a).

(iii) Particularly in (a), results in IV (recursion (1)) are better than those in

1-Ill (recursion (2)).

(IV) Method IV in (b) does almost as well as method V, the actual maximum

likelihood.

(V) Method III (regression imputation plus residual) is the least efficient of the

variants of recursion (1) for estimating p2 but, as expected, it is better than method I

for the estimation of E 22* This illustrates the fact that method 11 should underestimate

E22 on average, according to previous remarks. To check this the frequency of

underestimation of 122 was obtained for each method, am reported in Table 2. The results

point to the str4.ng negative bias in method 11.

The whole exercise was carried out also for samples of mize SO with qualitatively the

same results as above.

We have already pointed out the criticism that the results for the recursive methods

are order-dependent, an obvious disadvantage for the treatment of a finite data-set. A

very limited assessment of the order effect wam obtained by comparing the results gathered

from one ordering of the data and its reverse. (Consideration of all possible orderings

would be out of the question although a more ambitious project would be to compare a

moderately large number of Orandomm orderings.) Table 3 gives, from the 100 simulations,

the root mean squared difference in parameter estimates obtained by the two orderings for

methods I-IV. For some of the parameter estimates, as indicated, the ordering does not

affect the value. The most variation occurs with methods I, 11 and III particularly in the

estimation of 122. The results favor section (b) of the table very slightly.

Further numerical investigation is recorded in the M.Ic report of J-M. Jiang. In

particular he investigated the effect of a double-pass through the data. He considered a

pass through (forwards) followed by another pass with the reverse ordering (backwards). Re

also considered the corresponding backwards-forwards double-pass. Among the conclusions

-17-



TABLU 2

VrEQutNciss (011 oF 100) OF uNDuznsTINTIcN or 2

Method

I UIII IV V VI

(p - 0.0)

(a) 54 99o5 45 so 44

(b) 56 9964 45 so 53

(- 0.6)

()55 94 so 45 5o 40

(b) 56 94 55 45 56 47
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were the following, both of which support intuition.

i). Double-passes produced smaller R K's than single passes.

(ii). The differences between the forwards-backwards double-pass and the backwards-

forwards double-pass were small and even more so than the effects exemplified in Table 3

for different single-pass procedures.

Jiang also considered the performance of these recursive methods for the simpler

problem of estimating the mixing weight in a mixture of two known densities. He found, in

particular, that there the 'order effect" seemed less substantial than the among-

replications effect. Comparison of Tables I and 3 suggests that this may not be the case

in our example, particular in the estimation of E 22

-20-



6. DISCUSSION

Although this paper has concentrated on missing-value problems, the general procedures

defined by (1) and (2) could be applied to many other incomplete data problems. Some were

looked at by Titterington (f982) and other illustrations could be drawn from Dempster,

Laird and Rubin (1977). in missing value problems, recursion (1) is comparatively easy to

use and particularly so in the illustration of Section 5. It sems likely that, in spite

of their inferior asymptotic performance. recursion (2) and the imputation-based versions

thereof will be appealing for their comparative simplicity in application. As far as

imputation is concerned, Section 5 illustrates once more the disadvantages that can arise

from man-imputation as compared with pseudo-random imputation, a point stressed by

Sedransk and Titterington (1980). They also describe methods, such as the hot-deck, for

dealing with incomplete data from sample surveys. It is hoped that this is one area in

particular where these recursive procedures will be very useful.
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